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Abstract Extensive transfer of tilapia between lakes

throughout East Africa has often led to hybridisation

with indigenous fish populations. The endemic Ore-

ochromis hunteri of Lake Chala, an isolated crater lake

near Mount Kilimanjaro, is potentially susceptible to

introgression from a species formerly identified as

Oreochromis korogwe, introduced * 30 years ago.

We combined whole-body geometric morphometry on

104 specimens of both taxa with molecular phyloge-

netic analysis of mitochondrial loci from 15O. hunteri

and 9 O. cf. korogwe specimens to assess whether

hybridisation has occurred. Using fishes from Lake

Jipe and Nyumba ya Mungu reservoir, we expanded

our analysis to all four Oreochromis species currently

inhabiting the Upper Pangani River system to deter-

mine the closest relative of O. hunteri, and hence the

possible source population of the ancestral species that

colonised Lake Chala. Our results indicate no inter-

breeding occurs between O. hunteri and O. cf.

korogwe, and suggest O. jipe to be the closest living

relative ofO. hunteri. The introducedO. cf. korogwe is

a phenotypically uniform but genetically variable

population, the identity of which remains unknown.

The high haplotype diversity of O. hunteri is consis-

tent with fossil evidence indicating that its ancestor

colonised Lake Chala at least 25,000 years ago.
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Introduction

Tilapia is one of the most productive food fishes in

Africa. Tilapia-based fisheries provide an often indis-

pensable protein source for local food security, and

especially Oreochromis species have been utilised for

this purpose in global aquaculture (Eknath & Hulata,

2009). This has led to extensive transfer from their

natural ranges into other regions and countries (Eknath

& Hulata, 2009). The invasive nature of some

Oreochromis species and their propensity for hybridi-

sation rightfully has raised concerns when they are

being introduced to regions with indigenous tilapiine

communities (e.g. Agnèse et al., 1997; D’Amato et al.,

2007; Nyingi & Agnèse, 2007; Angienda et al., 2011;

Deines et al., 2014; Ndiwa et al., 2014). It has been

suggested that the introgression of alien genes into

local species may also contribute to rapid speciation in

cichlids (Salzburger et al., 2002; Meier et al., 2017).

However, most often it simply induces a loss of

genetic diversity, through the homogenisation of gene

pools (Nyingi & Agnèse, 2007; Crispo et al., 2011;

Firmat et al., 2013).

Lake Chala (locally ‘Challa’, after a nearby village)

is a crater lake bridging the border between Kenya and

Tanzania, immediately to the southeast of Mt Kili-

manjaro in East Africa. It harbours the only natural

population of Oreochromis hunteri Günther, 1889

(Seegers et al., 2003), the type species of the genus

Oreochromis (Günther, 1889; Trewavas 1983). Until

the early 1980s it also seems to have been the only fish

species inhabiting Lake Chala, as surveys carried out

in 1889, 1902, 1946, 1952 and 1980 did not reveal

other species (Günther, 1889; Dadzie et al., 1988).

However, sometime in the late twentieth century two

other tilapiine species were introduced, namely

Coptodon rendalli (Boulenger, 1896) and Ore-

ochromis korogwe (Lowe, 1955) (Dadzie et al.,

1988; Seegers et al., 2003), as well as a small cichlid

identified as Haplochromis spec. ‘‘Chala’’ (Seegers

et al., 2003). The two Oreochromis species have the

potential to hybridise, as the deep open-water envi-

ronment of the lake encircled by near-vertical rocky

crater walls appears to offer limited potential for

reproductive or niche segregation.

Recent research on the long-term evolutionary and

ecological dynamics of O. hunteri in Lake Chala is

based on the analysis of its fossil teeth recovered from

the sediment record (Dieleman et al., 2015). This

study used the extant O. hunteri population as

principal reference for variation in fossil tooth mor-

phology, and assumed it to be genetically pure

(Dieleman et al., 2015). However, introgression of

genetic material due to interbreeding with an intro-

duced species could potentially impact important

morphological features (Parnell et al., 2012; Holzman

& Hulsey, 2017). Such a recently compromised

species integrity would complicate the comparison

of modern phenotypes with the fossil record. Quan-

titative examination of general body morphology and

the shape of oral teeth by Dieleman et al. (2015) found

the two local Oreochromis species to be clearly

distinct, arguing against recent and/or ongoing

hybridisation. However, demonstration of the pres-

ence or absence of shared haplotypes with molecular

genetic methods would provide a more sensitive test of

hybridisation. Such genetic assessment is particularly

relevant for the endemicO. hunteri population in Lake

Chala, where detection of recent hybridisation would

have implications for both taxonomy and conserva-

tion. Also, comparing genetic data of O. hunteri with

that of Oreochromis populations from nearby waters

might help reveal its phylogenetic associations, by

providing information on the possible source popula-

tion(s) from where the isolated crater lake was

colonised, and on the approximate timing of this

colonisation (Barluenga et al., 2006; Elmer et al.,

2012; Genner & Turner, 2014).

In this study, we aim to (i) validate with genetic

evidence the quantitative morphological differences

and apparent lack of interbreeding between the

endemic and introduced Oreochromis in Lake Chala;

(ii) identify the closest relative of Oreochromis

hunteri by molecular phylogenetic analysis of the

Oreochromis fauna inhabiting Lake Chala and the

only two nearby lakes, namely Lake Jipe and the

Nyumba ya Mungu reservoir; and (iii) provide an

estimate of the timing of O. hunteri’s arrival in Lake

Chala.

Study area

Lake Chala (3�190S, 37�420E) is a freshwater lake with
a surface area of 4.5 km2 and a maximum depth that

W. D. Nyingi

Ichthyology Section, Zoology Department, National

Museums of Kenya, P.O. Box 40658-00100, Nairobi,

Kenya
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has fluctuated between 92 and 98 m since 1999 (Wolff

et al., 2014). The lake fills a volcanic caldera basin

at * 880 m above sea level immediately east of

Mount Kilimanjaro, and is hydrologically mainly

influenced by subsurface in- and outflow (Moernaut

et al., 2010). Despite its isolated location, biogeo-

graphically it is considered part of the Upper Pangani

River basin (Seegers et al., 2003), which also contains

Lake Jipe (Kenya/Tanzania) and the man-made reser-

voir Nyumba ya Mungu (Tanzania; Fig. 1). The

former is a medium-sized (30 km2) but very shallow

(\ 3 m) muddy lake located immediately east of the

Pare Mountains. It is fed by the Lumi River and drains

into the Ruvu River, both at the northern end of the

lake, and its shoreline is fringed with swamps.

Nyumba ya Mungu was created in 1965, has a surface

area of 110–180 km2 depending on rainfall and

drawdown, and gradually increases in depth from 4

in the north to 41 m at the dam (Denny, 1978). It lies in

the north–south trending valley between the Lelatema

and Pare Mountains, at the former confluence of the

Ruvu and Kikuletwa rivers. The reservoir drains into

the Pangani River, which flows into the Indian Ocean

500 km to the southeast.

Regional ichthyofauna of the Upper Pangani

system

The indigenous Oreochromis fauna of the Upper

Pangani region is rather modest. Apart from

O. hunteri, endemic to Lake Chala, Oreochromis jipe

(Lowe, 1955) is considered indigenous to both Lake

Jipe and the Pangani River itself (Lowe, 1955;

Trewavas, 1983; Seegers et al., 2003). Trewavas

(1983) also reports the species Oreochromis pan-

gani (Lowe, 1955), with subspecies O. pangani pan-

gani in the Pangani River and O. pangani girigan in

Lake Jipe. However, following Seegers et al. (2003)

we regard these as junior synonyms of O. jipe.

Morphologically, O. jipe is considered the closest

relative of O. hunteri, sharing high numbers of

vertebrae, scales and dorsal fin rays (Trewavas,

1983), but to our knowledge this has never been

confirmed by genetic data. Transfer of tilapiine fishes

to improve local fisheries started influencing the

ichthyofauna in this region from the 1970s onwards.

For most of these transfers, no written records are

available, and nearly all dates mentioned below are

based on observations made during field surveys,

rather than actual accounts.

A survey in 1980 found only the endemicO. hunteri

in Lake Chala, but in 1985 catches also included

Coptodon rendalli and one specimen that the collec-

tors identified as O. pangani (Dadzie et al., 1988).

Since the latter species does not occur in any recent

catches, it either rapidly disappeared after its intro-

duction, or the specimen was in fact O. hunteri

misidentified as O. pangani. More recently a second

Oreochromis species has been found in significant

numbers, and has been thought to be O. korogwe

(Seegers et al., 2003). Morphologically, however,

Lake Chala specimens do not fully correspond to the

O. korogwe holotype, which naturally inhabits the

Lower Pangani River. Seegers et al. (2003) thus

recommended to confirm this association, but no such

study has been carried out so far.

The first written account of catches ofOreochromis

esculentus (Graham, 1928) in Lake Jipe (which nat-

urally occurs only in Lake Victoria) dates from 1983,

followed by C. rendalli (naturally distributed through-

out the Congo River basin, lakes Tanganyika and

Malawi, and southern Africa) in 1985 (Dadzie et al.,

1988). However, Trewavas (1983) suggests that at

least O. esculentus must have been introduced there

200 km
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MOZAMBIQUEZAMBIA

Chala

Nyumba
      ya
 Mungu

Mt Kilimanjaro
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Fig. 1 Skeleton maps of East Africa and the Upper Pangani

River basin (inset) in northern Tanzania, with indication of the

sampled surface waters Chala, Jipe and Nyumba ya Mungu.

River systems (1–4) and towns (5–6) mentioned in the text are

indicated by numbers. 1 Lumi, 2 Ruvu, 3 Kikuletwa, 4 Pangani,

5 Taveta, 6 Korogwe
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already in the 1950s, but that it went unnoticed in

previous surveys. In Nyumba yaMungu,O. esculentus

and C. rendalli were caught for the first time in

respectively 1973 and 1974 (Bailey, et al., 1978). It is

unclear whether O. jipe colonised this reservoir in a

natural way, or was introduced (Trewavas, 1983).

This general lack of written records complicates

determining the exact source populations of intro-

duced species, but some inferences can be made.

Probably, most of the region’s lakes were stocked with

fish from nearby fish ponds, because transporting

living fry had to be logistically feasible. The fish ponds

still present today around the town of Taveta and near

Lake Jipe are good candidates, as they date back to the

late 1940s when the British colonel Ewart Scott

Grogan settled in the region and established a sisal

farm that included such ponds (Dadzie et al., 1988).

Tilapiines were also reared in governmental fish ponds

at the town of Korogwe, located downstream along the

Pangani River, for stocking reservoirs and ponds

throughout the Tanganyika region (Lowe, 1955;

Bailey et al., 1978). Among those species were O.

jipe and O. korogwe, but also O. esculentus and

Oreochromis variabilis (Boulenger, 1906) from Lake

Victoria, and C. rendalli and Oreochromis macro-

chir (Boulenger, 1912) that had previously been

raised in ponds in the D.R. Congo province of Katanga

(Lowe, 1955; Dadzie et al., 1988). It seems thus most

plausible that species introduced in the Upper Pangani

Region, including Lake Chala, derive from popula-

tions that were reared in the Korogwe or Taveta ponds.

Methods

Specimen collection

For this study, we obtained 104 specimens from local

fishermen servicing nets on the Kenya (southeast) side

of Lake Chala, in September 2012, January 2014 and

September 2015. Similarly, 15 specimens were

obtained from fishermen along the southeast shore of

Lake Jipe and 10 from the north shore of Nyumba ya

Mungu (hereafter, NyM) during the same periods.

Initially the local names given to the diverse species

were recorded for each specimen; the corresponding

nominal species names were assigned afterwards.

From Lake Chala, two Oreochromis species were

distinguished, being O. hunteri (‘Chala’) and O. cf.

korogwe (‘Bandia’). From Lake Jipe, we collected O.

jipe (‘Asilia’) and O. esculentus (‘Polana’). At NyM

we collected O. jipe (‘Asilia’) and O. esculentus

(‘Polana’) (Supplementary Table 1).

Geometric morphometric analysis

Whole-body photographs of fresh specimens were

taken in the field prior to preservation, from a

perpendicular angle. This was carried out by position-

ing specimens on graph paper with their left side

facing up and fins spread out.

Overall body morphology was analysed as in

Dieleman et al. (2015), using 16 traditional landmarks

(Fig. 2) digitised in tpsDig2 version 2.17 (Rohlf,

2010). The present study includes data on 95 Lake

Chala specimens previously presented by Dieleman

et al. (2015). Size was calibrated using the graph paper

visible on the photograph. The digitised landmark

dataset was aligned via Procrustes superimposition in

the program CoordGen6 h of the Integrated Morpho-

metrics Package software (Sheets, 2008). Procrustes

coordinates and rescaled centroid size were saved as

data matrix file in IMP format. All further analyses

were performed on these Procrustes coordinates.

Overall variation in body shape was analysed using

principal component analysis (PCA) in R (R
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5

Fig. 2 Outline drawing of a female Oreochromis hunteri from

Lake Chala with indication of the digitised landmarks. 1 rostral

tip of the upper jaw, 2 caudodorsal tip of maxillary bone, 3

centre of the eye, 4 rostral insertion of the dorsal fin, 5 caudal

insertion of the dorsal fin, 6 base of the dorsal caudal fin ray, 7

intersection between lateral line and insertion of the caudal fin, 8

base of the ventral caudal fin ray, 9 caudal insertion of the anal

fin, 10 rostral insertion of the anal fin, 11 rostral insertion of the

pelvic fin, 12 base of the dorsal pectoral fin ray, 13 most caudal

point of the operculum, 14 ventral intersection between the

branchiostegal membrane and body outline, 15 intersection

between the line connecting landmarks 2 and 3 and the eye

outline, 16 intersection between the line connecting landmarks 3

and 13 and the eye outline. After Dieleman et al. (2015)
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Development Core Team, 2016). Multivariate Anal-

ysis of Variance (MANOVA) with four constraints

was used to determine whether the fish taxa as

distinguished by their local names indeed reflect

significantly distinct shape morphs, and Canonical

Variate Analysis (CVA) was used to determine the

axes of maximal group separation. Both analyses were

conducted on minimal Mahalanobis distances in

PAST v. 2.17 (Hammer et al., 2001), and results were

cross-validated by comparing leave-one-out (jack-

knifed) classifier tables to the original confusion

matrix. Substantial differences between these two

classifier tables would reflect the important influence

of one or few specimens on the observed outcome, and

hence reveal any unreliable results.

MtDNA genotyping and analysis

We isolated DNA from tissue sample collected and

stored in the field in 99.5% absolute ethanol using the

Blood and Tissue DNA isolation kit (Qiagen) follow-

ing the manufacturer’s specifications. Two mitochon-

drial loci, NADH dehydrogenase subunit 2 (ND2) and

part of the control region (CR), were amplified via

polymerase chain reaction (PCR), using the published

primers MET and TRP for ND2 (Kocher et al., 1995),

and L-Pro-F (Meyer et al., 1994) and TDK-D (Lee

et al., 1995) for CR. PCR was performed in 25 ll
reaction volumes, containing 1 ll DNA extract, 2.5 ll
PCR buffer II (Applied Biosystems), 0.5 ll of either
primer [10 lM], 1 ll MgCl2 solution [25 mM], 0.4 ll
dNTP solution [10 mM], 0.1 ll AmpliTaq Gold DNA

polymerase [5U/ll] (Applied Biosystems), and 19 ll
water. Thermocycling was performed with an initial

denaturation for 3 min at 95�C, then 30 cycles with

30 s at 95�C, 30 s at 55�C, and 1 min at 72�C,
followed by final elongation for 7 min at 72�C.
Reaction products were cleaned up using ExoSAP-

IT PCR Product Cleanup Reagent (Affymetrix),

following the manufacturer’s instructions. Purified

PCR products were used for cycle sequencing reac-

tions using the BigDye Terminator Mix v3.1 (Applied

Biosystems). Cycle sequencing was performed for

each sample and primer combination using 4 ll of
BigDye Terminator 3.1 Ready Reaction Mix, 1.5 ll of
primer [10 lM], 2 ll cleaned PCR product, and 2.5 ll
water. Thermocycling was performed with 1 min at

96�C, then 25 cycles with 10 s at 94�C, 5 s at 50�C,
and 4 min at 60�C. Cycle sequencing reactions were

cleaned using ethanol precipitation. Sanger sequenc-

ing was performed on an ABI 3730 48-well capillary

DNA Analyser (Applied Biosystems, Foster City, CA,

USA). Electropherograms and their automatic trans-

lation were checked by eye and trimmed. Overlapping

sequence reads from either direction were merged for

each sample and locus. For each locus, 38 sequences

were generated for this study (Supplementary

Table 1).

In total, four sequence alignments were generated.

Lengths differed between alignments due to the

occurrence of gaps with more distantly related species,

and as a result of trimming positions with excess

missing data from the alignment ends. O. hunteri CR

sequences (N = 15) were aligned (430 positions) and

used for demographic analyses. All new Oreochromis

sp. sequences (N = 38) were aligned for each locus

separately (1051 positions for ND2, 435 for CR), and

concatenated to generate a haplotype network. Addi-

tional, published sequences of each locus were

downloaded from Genbank (https://www.ncbi.nlm.

nih.gov, Supplementary Tables 2 and 3) and analysed

jointly with those new to this study. The datasets were

pruned and trimmed, resulting in two alignments with

1040 and 437 positions, and 71 and 90 sequences, for

ND2 and CR, respectively. These alignments were

used for locus-wise phylogenetic analysis in RAxML

(version 8.2.4; Stamatakis, 2014). To find the best-

scoring maximum likelihood tree in each case, we

performed rapid bootstrap analyses using the

GTRGAMMAI model of sequence evolution and 100

alternative runs from distinct starting trees. The

resulting trees were visualised in, and figures created

with, FigTree version 1.4.3 (Rambaut, 2009) and fitchi

(Matschiner, 2016), for the locus-wise molecular

phylogenies and the haplotype network, respectively.

To test for a genetic signature of past population

expansion in O. hunteri’s CR sequences, we per-

formed a haplotype mismatch distribution analysis in

Arlequin 3.5 (Excoffier et al., 2005) and a coalescent

Bayesian skyline plot analysis (BSP; Drummond et al.,

2005) in BEAST2, v2.4.5 (Bouckaert et al., 2014).

Populations that have undergone a period of sudden or

exponential growth in the past exhibit a characteris-

tically unimodal, wave-like pattern in the distribution

of haplotype mismatches. If present, the mode of this

distribution together with estimates of generation time

and mutation rate can be used to infer the approximate

timing of population expansion (e.g. Barluenga et al.,
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2006). We performed the BSP analysis using a strict

molecular clock model with the base substitution rate

estimate of 0.0324 changes per site per million years

(SE 0.0139) of Genner et al. (2010). Our analysis

employed a non-coding site model, and the Hase-

gawa–Kishino–Yano (HKY) substitution model with

empirical base frequencies (Hasegawa et al., 1985),

identified as best choice for these data, using

jModelTest v. 2.1.10 (Darriba et al., 2012). Chain

length was 25,000,000 steps, and the first 10% was

discarded as burn-in. This analysis also estimated the

timing of the deepest coalescence event of the O.

hunteri CR sequences.

Results

Morphological characterisation of regional

tilapiine taxa

The first two axes of the PCA (Fig. 3a) together

explain 47.14% of the observed variation in general

body morphology. Principal component 1 (PC1)

mainly reflects variation in body elongation and depth,

with long and slender bodies on the positive side and

shorter, deeper bodies on the negative side of the axis

(Fig. 3c). PC1 distinguishes O. hunteri from the other

Oreochromis species. PC2 reflects differences within

body depth: specimens with positive PC2 values are

ventrally flattened, whereas negative PC2 values

correspond to ventrally extended specimens (Fig. 3d).

Although assumptions for CVA and MANOVA

were not met, jackknifed confusion matrices did not

differ substantially from the original classification

table. Therefore, we consider these results as reliable,

−0.02
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0.02
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−0.04 −0.02 0.00 0.02

PC1 (26.23%)

P
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0.
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%
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−5 0
CV 1

C
V

2

5

O. hunter

0 1

Oi . esculentusO. jipe‘Bandia’
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Fig. 3 a PCA ordination plot synthesising overall variation in

body morphology among the four Oreochromis species

currently inhabiting the Upper Pangani River basin. Green,

purple and yellow symbols represent specimens from respec-

tively Lake Chala, Lake Jipe and NyM reservoir, with large

symbols of each type and colour indicating sequenced

specimens. The two arrows point to the specimens of O. jipe

and ‘Bandia’ with genetically distinct positions in the phyloge-

netic trees. b CVA scatter plot showing maximal phenotypic

separation of the four groups of specimens attributed to each of

the four taxa. The outline drawings represent c the positive

(black) and negative (grey) extremes of PC1, and d the positive

(black) and negative (grey) extremes of PC2
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except for O. esculentus, where the small sample sizes

(2 specimens from Jipe, 4 from NyM) prevented

comparison with the other species except for O.

hunteri. Uncorrected and Bonferroni-corrected pair-

wise comparison results indicate thatO. hunteri,O. cf.

korogwe and O. jipe specimens as identified by their

local names differ significantly in overall body

morphology at the (overall) 5% confidence level

(Table 1; Wilks’ k = 0.003, P\ 0.001); the CVA

scatter plot (Fig. 3b) shows all four taxa to be clearly

distinct from one another. O. hunteri is separated from

the other species along the first axis (CV1), whereas

the other species are separated along the second axis

(CV2).

Genetic characterisation of regional Oreochromis

taxa

Phylogenetic trees

Figure 4 depicts the phylogenetic trees of a selection

of relevant African Oreochromis taxa based on

sequence data from the mitochondrial control region

(CR) and NADH dehydrogenase subunit 2 (ND2)

genes, respectively. Specimens of the four Ore-

ochromis taxa as identified by local fishermen, and

as validated by geometric morphometric analysis,

largely cluster into distinct mitochondrial clades.

Further, CR and ND2 sequences suggest very similar

phylogenetic affiliations, as could be expected from a

non-recombining pair of markers. Only few of the

studied specimens appear genetically distinct from

these clusters. Specimens representing ‘Chala’ (O.

hunteri) from Lake Chala and ‘Asilia’ (O. jipe) from

both Lake Jipe and NyM cluster together in one clade,

but with a distinct, albeit nested, split between the two

species. Comparison with relevant GenBank

sequences confirms the identity of ‘Asilia’ as O. jipe

and suggests a close relationship with Oreochromis

amphimelas (Hilgendorf, 1905) specimens from an

unknown locality. The latter species occurs naturally

in lakes of the Eastern Rift Valley in Tanzania

(Manyara, Eyasi, Kitangiri, Singida), situated to the

west of the Upper Pangani region. However, CR

sequences of O. amphimelas from Lake Manyara

occur in very different parts of the tree. Nevertheless,

the latter clade is separated fromO. hunteri andO. jipe

by nodes with very low support values, so that their

close relationship with O. amphimelas cannot be ruled

out.

One ‘Asilia’ specimen from NyM (ASILIA_-

nym011) clusters with Oreochromis niloticus (Lin-

naeus, 1758) genotypes, although morphologically it

groups with the other ‘Asilia’ examined in this study

(Fig. 3a). The Lake Chala fishes identified by local

fishermen as ‘Bandia’ (O. cf. korogwe), although

morphologically uniform (Fig. 3a), display a fairly

distinct split within their main clade, with CR and

ND2 sequences separating the same two sub-groups of

specimens. This differentiation appears greater than

the variation within O. hunteri, or even the difference

between O. hunteri and O. jipe (Fig. 4). Most of our

‘Bandia’ specimens cluster phylogenetically with

Oreochromis urolepis (Norman, 1922). One available

O. urolepis CR sequence, representing a specimen

from the Wami river, was even identical to a subset of

‘Bandia’ sequences. This river belongs to the natural

range of O. urolepis, and is located just south of the

Pangani River basin. One particular Lake Chala

specimen (BANDIA_cha053) is phylogenetically

even further removed from the main ‘Bandia’ clade.

Our phylogenetic reconstruction based on the CR gene

suggests close affinity with an unidentified Ore-

ochromis specimen (HT-1639) collected from Pangani

River, and dubbed Oreochromis ‘Korogwe’ in the

original publication (Nagl et al., 2001). Its ND2

sequence reveals that a specimen of Oreochromis

mweruensis, (Trewavas, 1983) collected in Lake

Mweru Wantipa (Zambia), may be a close relative

(Klett & Meyer, 2002).

Table 1 Uncorrected (above the diagonal) and Bonferroni-

corrected (below the diagonal) post hoc results, showing that

all taxa as identified by their local names differ significantly in

overall body morphology. The limited sample size of Polana

caused pairwise comparisons to be non-applicable (N.A.) in

some cases

‘Chala’ ‘Asilia’ ‘Bandia’ ‘Polana’

O. hunteri

‘Chala’ \ 0.001 \ 0.001 \ 0.001

O. jipe

‘Asilia’ \ 0.001 \ 0.001 N.A.

O. cf. korogwe

‘Bandia’ \ 0.001 0.003 N.A.

O. esculentus

‘Polana’ \ 0.001 N.A. N.A.
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Haplotype network

An unrooted haplotype network of all genotyped

Oreochromis specimens based on concatenated CR

and ND2 sequences reveals 20 different haplotypes

(Fig. 5). Again, the four taxa locally recognised as

such (and distinguished by morphology, Fig. 3a) also

group into distinct mitochondrial clusters. Among our

15 O. hunteri specimens, haplotype 20 is the most

abundant (9 specimens), with six less common hap-

lotypes (one specimen each) differing from haplotype

20 by up to five mutation steps. These sevenO. hunteri

haplotypes share a hypothetical common ancestor

(haplotype 22) with O. jipe. Our seven O. jipe

specimens comprise five haplotypes, of which one is

found in Lake Jipe (2 specimens) and four in NyM,

three of which are more closely related to O. hunteri

(Fig. 5).

The deep split in the main group of Lake Chala

‘Bandia’ (O. cf. korogwe) specimens separates haplo-

type 16 (3 specimens) from haplotypes 14, 15 and 17

(together 5 specimens), and reiterates the observations

in the phylogenetic trees. Haplotypes of the aberrant

‘Bandia’ specimen from Lake Chala (12; near O.

mweruensis) and ‘Asilia’ specimen from NyM (10;

near O. niloticus) are also here strongly isolated from

their respective, morphology-based, clusters.
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Fig. 4 Maximum likelihood phylogenetic trees of relevant

African Oreochromis taxa based on sequences of the a control

region (CR) and b NADH dehydrogenase subunit 2 (ND2) gene

in mitochondrial DNA. Sarotherodon melanotheronwas used as

outgroup. The specimens sequenced in this study are colour-

coded per site, as in Fig. 3: Chala (green), Jipe (purple) and

NyM (yellow). Node support values are given in percent and are

based on 100 bootstrap replicates. Note the low support for

deeper nodes in both trees, but high support for those nodes on

which identification of the closest relatives of the target species

relies
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Mismatch distribution and skyline plot

The observed haplotype mismatch distribution of the

15 genotyped O. hunteri specimens is not unimodal

(Fig. 6a), hence no distinct event of past population

expansion can be defined. Likewise, the Bayesian

skyline plot (Fig. 6b) does not provide evidence of a

sudden large change in population size that might

indicate a post-colonisation expansion. Instead, both

results suggest that the size of the Lake Chala

population has been relatively stable, or only slightly

and continuously increasing, over an extended period

of time. We estimate the oldest coalescence event for

the CR sequences to have occurred approximately

100,000 years ago (100 ka), with a median of 92.4 ka

and a 95% highest posterior density (HPD) interval

ranging from 230 ka to 19 ka.
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hypothetical haplotypes at

network nodes. The
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of individuals with a certain
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undocumented mutation

steps between the
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Discussion

Oreochromis in Lake Chala

To allow treatment of the extant O. hunteri as a

modern-day reference for the fossil record of Lake

Chala, hybridisation with species recently introduced

to Lake Chala should ideally be ruled out. Although

clear morphological distinction between O. hunteri

and O. cf. korogwe was demonstrated earlier (Diele-

man et al., 2015) and is confirmed by this study

(Fig. 3), a complementary molecular genetic approach

enabled direct assessment of the likelihood of past

hybridisation events. The results of our phylogenetic

analyses (Figs. 4, 5) show that Lake Chala specimens

assigned to these two Oreochromis species form

distinct, well-supported genetic clades and do not

share mitochondrial haplotypes, suggesting that

hybridisation in Lake Chala is absent or at least very

rare. Hybridisation can be detected more reliably with

a combination of mitochondrial and nuclear markers,

as introgression does not necessarily always affect

both genomes at the same time (Nyingi & Agnèse,

2007; Angienda et al., 2011). However, mitochondrial

introgression appears to happen more readily than

introgression of nuclear loci, due to, for example,

interspecific matings being more likely to occur

between females of the (initially) rare invading species

and males of the normally more abundant native

species (Wirtz, 1999). Mitochondrial alleles might

also be comparatively neutral in a new genetic

background, as opposed to alleles of nuclear genes,

or of loci those genes are linked to (Martinsen et al.,

2001). In Oreochromis, cases of mitochondrial intro-

gression have been demonstrated to occur without

apparent nuclear introgression (Rognon & Guyomard,

2003; Nyingi & Agnèse, 2007), or with parallel

introgression of only a few nuclear loci (Ndiwa et al.,

2014). While this discrepancy might in part reflect a

bias towards traditionally studied mitochondrial loci,

these studies at least demonstrate that mitochondrial

introgression in Oreochromis appears to occur readily

and frequently. As O. hunteri and O. cf. korogwe from

Lake Chala can easily be distinguished phenotypically

and are not found to share mitochondrial haplotypes

despite three decades of syntopy, we consider the

species integrity of O. hunteri to be currently intact,

and regard its morphology as a reliable modern-day

reference frame for interpretation of its fossil record.

The uniform and spatially contiguous habitat of

Lake Chala does not provide much opportunity for

species segregation, but the observed lack of mito-

chondrial exchange between the native and the

introduced Oreochromis does suggest some form of

reproductive isolation. Postzygotic barriers are not

very prominent in closely related cichlid species

(Stelkens et al., 2010), but various forms of premating

isolation may prevent the two species from inter-

breeding. Visual identification of species-specific

coloration patterns, olfactory cues and sound recogni-

tion are important segregation mechanisms in cichlid

species (Fryer & Iles, 1972). In fact, Stelkens &

Seehausen (2009) found that phenotypic divergence

predicts assortative mating better than does genetic

distance between species. Visual cues may be less

important in tilapias, but other mechanisms of isola-

tion have been suggested in this group, such as

separation in spawning time and distinctions in

microhabitat preference (Pullin & Lowe-McConnell,

1982; Lowe-McConnell, 1987; Beveridge & McAn-

drew, 2000).

Although distinction between species within tilapi-

ine genera is often notoriously difficult (Nagl et al.,

2001), the phenotypic/genotypic clusters of the four

species analysed in this study coincide largely with

usage of their local names, indicating that fishermen in

each lake most often differentiate accurately and

consistently between these fish taxa. However, one

‘Asilia’ specimen (in principle O. jipe) has a mito-

chondrial genotype clustering with O. niloticus¸

despite its phenotypical clustering with O. jipe. Our

morphometric dataset does not contain O. niloticus

specimens, and although this species has never been

encountered in past Lake Jipe surveys (Dadzie et al.,

1988; Seegers et al., 2003), the possibility exists that it

has been introduced in recent years, and that this

specimen is an actual O. niloticus or an individual

carrying an introgressed mitochondrial haplotype.

Importantly, the phenotypically uniform ‘Bandia’

(O. cf. korogwe) in Lake Chala also contains one

individual with a very distinct genotype and a

pronounced subdivision of the other specimens into

two clades. A possible explanation for the occurrence

of phenotype-genotype mismatches is that the aberrant

mitochondrial genotype introgressed via an inter-

breeding event, either ancient or recent (Rognon &

Guyomard, 2003; Ndiwa et al., 2014). This process

does not explain the genotypic division within the
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main ‘Bandia’ cluster, however. Historical collections

suggest that O. cf. korogwe has been introduced to

Lake Chala only during the 1980s (Dadzie et al.,

1988). Therefore, it is unlikely that this deep split,

more pronounced than even the split between O.

hunteri and O. jipe, has arisen locally in such a short

time, while the morphological uniformity of ‘Bandia’

implies that the population indeed consists of one

species. We propose that multiple stocking events, or

one single event containing a mix of genotypes, are a

likely cause for these distinct genotypes currently

coexisting in Lake Chala.

There also remains doubt about the true identity of

‘Bandia’, which Seegers et al. (2003) attributed to O.

korogwe with some reticence. Whereas all nine

specimens genotyped in this study are morphologi-

cally similar (Fig. 3a), most of their CR and ND2

sequences cluster with O. urolepis. The one exception

has a CR sequence most similar to that of a specimen

identified by Nagl et al. (2001) as O. ‘Korogwe’, but

this only refers to the eastern Tanzanian village where

it was collected (in Genbank this specimen is listed as

Oreochromis sp.). The ND2 sequence of the same

specimen suggests close relationship with a com-

pletely different species, O. mweruensis. No other O.

korogwe sequences are currently available, and at this

point we cannot rule out that our sequences would

align with other O. korogwe specimens. Our data

nevertheless suggest that the Lake Chala ‘Bandia’ (O.

cf. korogwe in this paper) were stocked from at least

two fish ponds, each containing a distinct O. urolepis

or O. korogwe population which itself may already

have undergone prior interbreeding with other Ore-

ochromis taxa. Future genetic studies using nuclear

markers may confirm this, and may elucidate the exact

identity of ‘Bandia’.

The likely ancestor of O. hunteri

Trewavas (1983) first suggested that O. jipe and O.

hunteri might be closely related, on the basis of their

similar number of vertebrae, which is generally higher

(31–34) than in other Oreochromis species such as O.

esculentus (30–31). One would therefore expect the

Upper Pangani tilapiines to have relatively elongated

bodies, and to cluster together in a PCA where body

elongation is an important character separating phe-

notypes along the principal axis of variation (PC1).

Our geometric morphometric data do not support this

suggestion. Based on morphological data alone

(Fig. 3), O. hunteri is distinct from the other three

species, whereas O. jipe clusters with O. cf. korogwe

and O. esculentus.

Our molecular phylogenetic analyses, in contrast,

do reveal O. jipe and O. hunteri to be each other’s

closest relative (Fig. 4). The two species form a

polytomy in both phylogenetic trees, but based on CR

sequences O. hunteri is nested within O. jipe, whereas

the opposite is true for ND2. This indicates that the

employed markers may not be optimal to resolve the

exact relationship of the two species, and further

interpretation would be prudent. Nevertheless, genetic

diversity of the O. jipe indigenous to Lake Jipe seems

to be nested in the greater genetic diversity of modern-

day O. jipe from NyM for both markers, despite the

fact that the lacustrine habitat of NyM reservoir is only

50 years old. We cautiously suggest that this high

diversity reflects standing variation retained through

time in riverine populations of O. jipe, which seeded

the newly formed NyM as well as the natural but

climate-sensitive Lake Jipe, after a (relatively recent)

environmental perturbation had eradicated its lacus-

trine population. In this context, we follow Seegers

et al. (2003) in considering the riverine O. pangani as

conspecific with the lacustrine O. jipe, notwithstand-

ing some morphological differences in oral and

pharyngeal teeth that had led Bailey et al. (1978) and

Trewavas (1983) to describe them as two distinct

species. Although no O. pangani specimens were

available for us to address this issue with genetic

analyses, we surmise that O. pangani may well be the

riverine representative of O. jipe, which ensured the

species’ survival in the Upper Pangani River basin

through past episodes of climatic drought when the

region’s shallow lakes fell dry. Although O. jipe

clusters with anO. amphimelas specimen in both trees,

most well-described specimens of the latter occur in

other parts of the tree, and that particular specimen

may be misidentified or may have been subject of

mitochondrial introgression. Therefore, also the

apparent relationship between O. amphimelas and O.

jipe should be treated with caution.

Timing and mode of the colonisation of Lake

Chala

The colonisation of isolated crater lakes by fish is still

an enigmatic process (Barluenga & Meyer, 2010;
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Elmer et al., 2012). The main mechanisms considered

are human introduction, a hypothetical former aquatic

connection and natural introduction by air (Elmer

et al., 2012). Although undocumented, late 20th

century human introduction is almost certainly how

O. cf. korogwe and C. rendalli arrived in Lake Chala.

Yet fossil fish teeth and bones occurring throughout

the presently recovered part of the sediment record

reveal presence of O. hunteri in Lake Chala since at

least 25,000 years ago (Dieleman et al., 2015).

Ancient, or at least pre-colonial, stocking of fishless

lakes in this region of East Africa, if it did occur, was

most likely restricted to the period after ca. 1000 AD,

when Bantu farmers first settled in theMt. Kilimanjaro

region (Håkansson, 2008). Therefore, the introduction

of fish by air, such as the transfer of fertilised eggs by

birds, arguably remains the only plausible explanation

of how the ancestor of O. hunteri arrived in Lake

Chala, given that a direct hydrographic connection of

the high-rimmed Chala crater to Upper Pangani

tributary streams can be ruled out.

Assuming that the niche space available to the

colonising O. hunteri ancestor was not filled by other

(now locally extinct) fish species, the ancestral O.

hunteri population probably expanded rapidly after

this initial colonisation. If so, the genetic signature of

this ancient population expansion in today’sO. hunteri

population should provide an estimate of the time

passed since then. However, as neither the haplotype

mismatch distribution nor the Bayesian skyline plot of

the 15 O. hunteri specimens we sequenced (Fig. 6)

reveal an unambiguous signal of rapid population

expansion, we cannot conclude with certainty that

such rapid population expansion has actually

occurred. Although sample sizes similar to ours have

allowed the detection of past population expansions in

some studies (e.g. Genner & Turner, 2014), some

authors suggest that sample sizes must be on the order

of 20–40 (Drummond & Bouckaert, 2015) or even 50

(Grant, 2015) for this purpose. Estimating the approx-

imate timing of the putative population expansion

which followed the colonisation of Lake Chala by the

ancestor of O. hunteri, using a coalescence approach,

must hence await the sequencing of additional

specimens.

The structure of the modern-day haplotype network

of O. hunteri, in which 15 specimens yield seven

haplotypes with up to five mutations between them,

does suggest that this endemic population is relatively

ancient, i.e. in line with the fossil evidence. The age of

Lake Chala itself is estimated at approximately

250,000 years, based on the total depth of its sedi-

mentary record as revealed by seismic reflection

stratigraphy (Moernaut et al., 2010) relative to the

radiocarbon-dated upper portion of this record (Ver-

schuren et al., 2009; Blaauw et al., 2011). The HPD

interval derived from our genetic data suggests the age

of the oldest coalescence event within O. hunteri to

range between 230,000 and 19,000 years. Although

this is a rather wide bracket of time, its upper (older)

end is consistent with the current best estimate of the

age of Lake Chala, whereas its lower (younger) end is

only a slight underestimation of the minimum age of

the population based on fossil evidence. Given the

modest number of sequences currently available, and

therefore the potential for more distant haplotypes to

remain undocumented at this time, we consider an

early rather than late colonisation most plausible.
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